Cryptocurrency, Blockchain networks: Facing new security paradigms

January 24, 2019 11:42 am


Words by: FireEye

On Jan. 22, FireEye participated in a panel focused on cryptocurrencies and blockchain technology during the World Economic Forum. The panel addressed issues raised in a report developed by FireEye, together with our partner Marsh & McLennan (a global professional services firm) and Circle (a global crypto finance company). The report touched on some of the security considerations around crypto-assets – today and in the future, and in this blog post, we delve deeper into the security paradigms surrounding cryptocurrencies and blockchain networks.

First, some background that will provide context for this discussion.

Cryptocurrencies – A Primer

By its simplest definition, cryptocurrency is digital money that operates on its own decentralized transaction network. When defined holistically, many argue that cryptocurrencies and their distributed ledger (blockchain) technology are powerful enough to radically change the basic economic pillars of society and fundamentally alter the way our systems of trust, governance, trade, ownership, and business function. However, the technology is new, subject to change, and certain headwinds related to scalability and security still need to be navigated. It is safe to assume that the ecosystem we have today will evolve. Since the final ecosystem is yet to be determined, as new technology develops and grows in user adoption, the associated risk areas will continually shift – creating new cybersecurity paradigms for all network users to consider, whether you are an individual user of cryptocurrency, a miner, a service provider (e.g., exchange, trading platform, or key custodian), a regulator, or a nation-state with vested political interest.

Malicious actors employ a wide variety of tactics to steal cryptocurrencies. These efforts can target users and their wallets, exchanges and/or key custodial services, and underlying networks or protocols supporting cryptocurrencies. FireEye has observed successful attacks that steal from users and cryptocurrency exchanges over the past several years. And while less frequent, attacks targeting cryptocurrency networks and protocols have also been observed. We believe cryptocurrency exchanges and/or key custodial services are and will continue to be, attractive targets for malicious operations due to the potentially large profits, their often-lax physical and network security, and the lack of regulation and oversight.

This blog post will highlight some of the various risk areas to consider when developing and adopting cryptocurrency and blockchain technology.

Wallet & Key Management

Public and Private Keys

There are two types of keys associated with each wallet: a public key and a private key. Each of these keys provides a different function, and it is the security of the private key that is paramount to securing cryptocurrency funds.

The private key is a randomly generated number used to sign transactions and spend funds within a specific wallet, and the public key (which is derived from the private key) is used to generate a wallet address to which they can receive funds.

Figure 1: Private key, public key, and address generation flow

The private key must be kept secret at all times and, unfortunately, revealing it to third-parties (or allowing third-parties to manage and store private keys) increases convenience at the expense of security. In fact, some of the most high-profile exchange breaches have occurred in large part due to a lack of operational controls relating to the storage of private keys. Maintaining the confidentiality, integrity, and availability of private keys requires fairly robust controls.

However, from an individual user perspective, a large number of user-controlled software wallet solutions store the private and public keys in a wallet file on the user’s hard drive that is located in a well-known directory, making it an ideal target for actors that aim to steal private keys. Easily available tools such as commercial keyloggers and remote access tools (RATs) can be used to steal funds by stealing (or making copies of) a user’s wallet file. FireEye has observed myriad malware families, traditionally aimed at stealing banking credentials, incorporate the ability to target cryptocurrency wallets and online services. FireEye Intelligence subscribers may be familiar with this already, as we’ve published about these malware families use in targeting cryptocurrency assets on our FireEye Intelligence Portal. The following are some of the more prominent crimeware families we have observed include such functionality:

-Atmos

-Dridex

-Gozi/Ursnif

-Ramnit

-Terdot

-Trickbot

-ZeusPanda/PandaBot

-IcedID

-SmokeLoader

-Neptune EK

-BlackRuby Ransomware

-Andromeda/Gamarue

-ImminentMonitor RAT

-jRAT

-Neutrino

-Corebot

Wallet Solutions

By definition, cryptocurrency wallets are used to store a user’s keys, which can be used to unlock access to the funds residing in the associated blockchain entry (address). Several types of wallets exist, each with their own level of security (pros) and associated risks (cons). Generally, wallets fall into two categories: hot (online) and cold (offline).

Hot Wallets

A wallet stored on a general computing device connected to the internet is often referred to as a “hot” wallet. This type of storage presents the largest attack surface and is, consequently, the riskiest way to store private keys. Types of hot wallets typically include user-controlled and locally stored wallets (also referred to as desktop wallets), mobile wallets, and web wallets. If remote access on any hot wallet device occurs, the risk of theft greatly increases. As stated, many of these solutions store private keys in a well-known and/or unencrypted location, which can make for an attractive target for bad actors. While many of these wallet types offer the user high levels of convenience, security is often the trade-off.

If considering the use of hot wallet solutions, FireEye recommends some of the following ways to help mitigate risk:

. Use two-factor authentication when available (as well as fingerprint authentication where applicable).

. Use strong passwords.

. Ensure that your private keys are stored encrypted (if possible).

. Consider using an alternative or secondary device to access funds (like a secondary mobile device or computer not generally used every day) and kept offline when not in use.

Cold Wallets

Offline, also called cold wallets, are those that generate and store private keys offline on an air-gapped computer without network interfaces or connections to the outside internet. Cold wallets work by taking the unsigned transactions that occur online, transferring those transactions offline to be verified and signed, and then pushing the transactions back online to be broadcasted onto the Bitcoin network. Managing private keys in this way is considered to be more secure against threats such as hackers and malware. These types of offline vaults used for storing private keys is becoming the industry security standard for key custodians such as Coinbase, Bittrex, and other centralized cryptocurrency companies. Even recently, Fidelity Investments released a statement regarding their intentions to play an integral part of the Bitcoin’s custodial infrastructure landscape.

“Fidelity Digital Assets will provide a secure, compliant, and institutional-grade omnibus storage solution for bitcoin, ether and other digital assets. This consists of vaulted cold storage, multi-level physical and cyber controls – security protocols that have been created leveraging Fidelity’s time-tested security principles and best practices combined with internal and external digital asset experts.”-Fidelity Investments

While more security-conscious exchanges employ this type of key storage for their users, cold wallets are still susceptible to exploitation:

. In November 2017, ZDnet published an article describing four methods hackers use to steal data from air-gapped computers through what they call “covert channels.” These channels can be broken down into four groups:

. Electromagnetic

. Acoustic

. Thermal

. Optical

In addition to those four types of attacks, WikiLeaks revealed, as part of its ongoing Vault 7 leak, a tool suite (dubbed Brutal Kangaroo, formerly EZCheese) allegedly used by the CIA for targeting air-gapped networks.

In February 2018, security researchers with the Cybersecurity Research Center at Israel’s Ben-Gurion University made use of a proof-of-concept (PoC) malware that allowed for the exfiltration of data from computers placed inside a Faraday cage (an enclosure used to block electromagnetic fields). According to their research, attackers can exfiltrate data from any infected computer, regardless if air-gapped or inside a Faraday cage. The same group of researchers also revealed additional ways to exploit air-gapped computers:

. aIR-Jumper attack that steals sensitive information from air-gapped computers with the help of infrared-equipped CCTV cameras that are used for night vision

. USBee attack that can be used steal data from air-gapped computers using radio frequency transmissions from USB connectors

. DiskFiltration attack that can steal data using sound signals emitted from the hard disk drive (HDD) of the targeted air-gapped computer

. BitWhisper that relies on heat exchange between two computer systems to stealthily siphon passwords or security keys

. AirHopper that turns a computer’s video card into an FM transmitter to capture keystrokes

. Fansmitter technique that uses noise emitted by a computer fan to transmit data

. GSMem attack that relies on cellular frequencies

. PowerHammer, a malware that leverages power lines to exfiltrate data from air-gapped computers.

Hardware Wallets

Hardware wallets are typically a small peripheral device (such as USB drives) used to generate and store keys, as well as verify and sign transactions. The device signs the transactions internally and only transmits the signed transactions to the network when connected to a networked computer. It is this separation of the private keys from the vulnerable online environment that allows a user to transact on the blockchain with reduced risk.

However, hardware wallets are susceptible to exploitation as well, such as man-in-the-middle (MitM) supply chain attacks, wherein a compromised device is purchased. Such an event obstenibly occurred in early 2018, when an individual purchased a compromised Nano Ledger off of eBay, and consequently lost $34,000 USD worth of cryptocurrency stored on the device as the attacker created their own recovery seed to later retrieve the funds stored on the device. In order to trick the victim, the attacker included a fake recovery seed form inside the compromised device packaging (as seen in Figure 2).

Figure 2: Fraudulent recovery seed document for Ledger Nano (image source: Reddit)

To help mitigate the risk of such an attack, FireEye recommends only purchasing a hardware wallet from the manufacturer directly or through authorized resellers.

In addition to supply-chain attacks, security researchers with Wallet.fail have recently disclosed two vulnerabilities in the Ledger Nano S device. One of these vulnerabilities allows an attacker to execute arbitrary code from the boot menu, and the other allows physical manipulation without the user knowing due to a lack of tamper evidence. In both cases, physical access to the device is required, and thus deemed less likely to occur if proper physical security of the device is maintained and unauthorized third-party purchasing is avoided.

Paper Wallets

Typically, wallet software solutions hide the process of generating, using, and storing private keys from the user. However, a paper wallet involves using an open-source wallet generator like BitAddress[.]org and WalletGenerator[.]net to generate the user’s public and private keys. Those keys are then printed to a piece of paper. While many view this form of key management as more secure because the keys do not reside on a digital device, there are still risks.

Because the private key is printed on paper, theft, loss, and physical damage present the highest risk to the user. Paper wallets are one of the only forms of key management that outwardly display the private key in such a way and should be used with extreme caution. It is also known that many printers keep a cache of printed content, so the possibility of extracting printed keys from exploited printers should also be considered.

Exchanges & Key Custodians

According to recent Cambridge University research, in 2013 there were approximately 300,000 to 1.3 million users of cryptocurrency. By 2017 there were between 2.9 million and 5.8 million users. To facilitate this expedited user growth, a multitude of companies have materialized that offer services enabling user interaction with the various cryptocurrency networks. A majority of these businesses function as an exchange and/or key custodians. Consequently, this can make the organization an ideal candidate for intrusion activity, whether it be spear phishing, distributed denial of service (DDoS) attacks, ransomware, or extortion threats (from both internal and external sources).

Many cryptocurrency exchanges and services around the world have reportedly suffered breaches and thefts in recent years that resulted in substantial financial losses and, in many cases, closures (Figure 3). One 2013 study found that out of 40 bitcoin exchanges analyzed, over 22 percent had experienced security breaches, forcing 56 percent of affected exchanges to go out of business.

Follow AMEinfo on Facebook , LinkedIn, and Twitter , and subscribe to our newsletter at the bottom of this page.

AMEinfo Staff
By AMEinfo Staff
AMEinfo staff members report business news and views from across the Middle East and North Africa region, and analyse global events impacting the region today.



AMEinfo EXPERTS